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Abstract. We focus on the notion of the core, as adjusted in the context of auctions by Ausubel
and Milgrom [4]. Core-selecting mechanisms have been known to possess good revenue and fairness
guarantees and some of their variants have been used in practice especially for spectrum and other public
sector auctions. Despite their popularity, it has also been demonstrated that these auctions are generally
non-truthful, except when VCG lies in the core. As a result, current research has focused either on
identifying core-selecting mechanisms with minimal incentives to deviate from truth-telling, such as the
family of Minimum-Revenue Core-Selecting (MRCS) rules, or on proposing truthful mechanisms whose
revenue is competitive against core outcomes. Our results contribute to both of these directions. We start
with studying the core polytope in more depth and provide new properties and insights, related to the
effects of unilateral deviations from a given profile. We then utilize these properties in two ways. First,
we propose a truthful mechanism that is O(log n)-competitive against the MRCS benchmark, which is
a quite natural revenue benchmark. Our result is the first deterministic core-competitive mechanism
for arbitrary binary single-parameter domains, where only a randomized mechanism was known so
far. Second, we study the existence of non-decreasing payment rules, meaning that the payment of
each bidder is a non-decreasing function of her bid. This property has been advocated by the core-
related literature as it implies that the marginal incentive for misreporting is minimized. However, it
has remained an open question if there exist MRCS mechanisms that are non-decreasing. We answer
the question in the affirmative, by describing a subclass of rules with this property. This can be seen as
a further refinement on the set of MRCS rules, towards selecting mechanisms with the most desirable
attributes.

1 Introduction

The VCG mechanism has been undoubtedly one of the early landmarks within the field of mechanism design.
At the same time however, VCG is rarely preferred in more complex real-life auction scenarios, such as
allocation of spectrum or other governmental licences. The shortcomings that have led to this situation have
been well summarized by [2], and one of the most prominent drawbacks is the unacceptably low revenue that
VCG generates on instances that do not lack competition. The VCG payment corresponds to the externality
a bidder imposes on her competitors, and as a result, one can have even zero payments in worst case, giving
rise to free-riders [3].

To counterbalance this issue, Ausubel and Milgrom [2,4] adapted the notion of the core from the theory
of cooperative games and introduced the class of core-selecting mechanisms. These mechanisms first select
an optimal (welfare-maximizing) allocation as in VCG, but then the payments are set in a way that no
coalition of bidders together with the auctioneer can switch to a better outcome, of higher revenue for the
auctioneer. It was argued in [2] that a mechanism is of suboptimal performance in terms of revenue precisely
when the payments it assigns may not be in the core, which is quite common for VCG when the goods
exhibit complementarities. Moreover, a non-core outcome can be perceived as unfair by coalitions of bidders,
that could be collectively willing to pay more but still were not taken into consideration. Over the last years,
core-selecting mechanisms gained even higher support especially among practitioners, due to the fact that
they have been successfully implemented for a number of high-profile spectrum auctions, as well as other
public sector auctions in several countries [11].

Given the good performance of core-selecting auctions in terms of revenue and fairness, the next natural
question is whether we can have strategyproof payment rules in the core. Interestingly, for complement-free
settings, VCG can lie in the core. When there are complementarities however, core payments do not generally
yield truthful mechanisms [16]. With this negative aspect in mind, research on this topic has focused mainly
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on two directions. The first direction concerns a game-theoretic analysis of core-selecting mechanisms so as
to identify which payments from the core polytope have more desirable incentive properties. As an example
of this approach, it has been shown in [12] that selecting a minimum revenue core outcome also minimizes in
a certain sense, the total gain from unilateral deviations. When the minimum revenue does not prescribe a
unique outcome, a further refinement needs to take place, which is guided again by the incentives to deviate.
This has led to the family of quadratic payment rules (see Section 5). In parallel to these results, another
way to evaluate such mechanisms is by analyzing the performance of their Bayes Nash equilibria, e.g., [3]. At
the moment, the outcomes of these works have not yet led to definite conclusions and there is still an active
debate on what are the best core-selecting mechanisms, given also the recent experimental evaluation of [8].

The second direction was initiated by [15] and concerns the design of truthful (hence, not core-selecting)
mechanisms whose revenue is competitive against a core outcome. The core benchmark was naturally taken
to be the minimum revenue core outcome, given the properties highlighted in the previous paragraph. Hence,
a mechanism is then called α-core-competitive when it achieves a 1/α fraction of the minimum revenue core
outcome, for α ≥ 1. The main results of [15] involved the design of core-competitive mechanisms for a par-
ticular single-parameter domain motivated by online ad auctions. For more general combinatorial auctions,
one can also obtain core-competitive mechanisms using the results of [24], where a stronger benchmark has
been considered. This approach is still worth further investigation, as finding the best ratio against the core
benchmark it has remained open for various domains of interest.
Our Contribution. We focus on binary single-parameter domains where each bidder is either accepted or
rejected in every outcome. We start in Section 3, with providing new insights and properties on the geometry
of the core polytope. Our aim is to understand how the polytope is affected by a unilateral deviation of a
bidder from a given profile. To do this, we need to perform a kind of sensitivity analysis for the constraints of
the core. In the remaining of the paper, we then make use of the main results of Section 3 in two ways. First,
in Section 4, we derive a deterministic O(logn)-core-competitive strategyproof mechanism, where n is the
number of bidders. So far, only a randomized mechanism with the same ratio was known, implied by [24].
Our result is the first deterministic core-competitive mechanism for arbitrary single-parameter domains. It
also provides a separation between core-competitiveness, and the stronger benchmark of [24], for which an
impossibilityt result of Ω(n) has been known even for single-parameter environments. Second, in Section
5, we focus on the question of identifying more preferred mechanisms among the possible continuum of
minimum revenue core-selecting (MRCS) payment rules. This family has been recognized as having better
incentive properties among core-selecting mechanisms, and to refine it even further, we study the existence
of non-decreasing payment rules, meaning that the payment of each bidder is a non-decreasing function of
her bid [7, 13]. This property has been advocated, among others, for minimizing the marginal incentive to
deviate, but it has remained an open question if there exist MRCS rules satisfying it. We provide a positive
answer to this question, by describing a subclass of rules possessing the property, which can be seen as
a further refinement towards selecting MRCS mechanisms with the most desirable attributes. Overall, we
believe our results shed more light on understanding core-selecting and core-competitive mechanisms, and
expect that the properties established here can have even broader appeal and applicability.

1.1 Related Work

The core in the context of auctions was introduced in [2, 4], as a suitable formalism to understand settings
where the VCG mechanism underperforms in terms of revenue. In [4], Ausubel and Milgrom also proposed
core-selection as a standalone auction design goal by introducing an ascending auction format called the
ascending-proxy auction, whose equilibrium outcomes are in the core. The topic soon gained popularity both
in theory and in practice, and several follow up works emerged afterwards. A series of important works has
focused on exploring different core-selecting Pareto-efficient rules that have minimal incentives to deviate or
mechanisms that are core-selecting at equilibrium, see e.g., [10–13, 26, 27] and [3]. The incentives to deviate
have been quantified under different metrics and, to our understanding, no final consensus on the most
acceptable metric has been reached. Recently, an experimental comparison of Quadratic payment rules [11],
was conducted by [8] in an attempt to offer more insights on that front.

Regarding strategyproofness and core-selection, the work of [16] showed that when VCG payments lie in
the core, then this is the only truthful mechanism in the core, whereas when VCG is not in the core, there
exists no other truthful mechanism that is core-selecting. This reveals a severe incompatibility between truth-
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telling and core-selection, especially for auction domains that exhibit complementarities. Such domains can
arise naturally in spectrum auctions or in auctions related to online advertizing. Nevertheless, efforts have
been made to characterize the auction environments where the VCG outcome lies in the core [4, 6, 27, 29].
In [4], it is shown that in domains where the set of feasible allocations form a matroid (e.g. multi-unit
auctions [30]), VCG payments always lie in the core, and, therefore, it does not suffer from the shortcomings
we have discussed.

In [15], Goel et al. suggested the use of the minimum revenue core-selecting (MRCS) outcome, as a
competitive benchmark for the design of truthful mechanisms. In their work, they focus on the so called
Text and Image Ad-Auction, a special case of knapsack auctions, where k ad slots are being auctioned and
each bidder is known to require 1 or k ad slots. They proposed a truthful deterministic mechanism that is
O(
√

log k)-core-competitive and a truthful randomized one which is O(log log k)-core-competitive and these
factors are shown to be tight. To our knowledge, this is the only work where a core benchmark has been
explicitly used for truthful revenue maximization.

Clearly, the problem of designing truthful mechanisms for maximizing revenue is a fundamental research
direction that has attracted considerable attention, especially since the initial works of [14,17,19], see also [21].
Later on, envy-free pricing [20] formed another important approach with several follow up papers. However,
these lines of inquiry have mostly focused on environments where goods are substitutes (for which VCG
payments are in the core), whereas the core-benchmark is meaningful for environments with complemen-
tarities. For such environments, two notable benchmarks have been proposed in [1] for knapsack auctions
and in [24] for general combinatorial auctions. We refer the reader to [15] for a detailed comparison of all
these benchmarks with the minimum-core-revenue benchmark. The two main takeaways of these compar-
isons are that, the mechanism of [1] performs arbitrarily bad against the MRCS benchmark, whereas the
benchmark of [24] is stronger than MRCS. Hence being α-competitive in the sense of [24], implies being
α-core-competitive, for α ≥ 1. In [24], the authors propose a truthful randomized mechanism for general
combinatorial auctions that is O(logn)-competitive against their benchmark and show that this result is
tight. Moreover, they complement this finding by showing that no deterministic mechanism can be better
that Ω(n)-competitive against their benchmark. Their result implies a randomized O(logn)-core-competitive
mechanism for the binary single-parameter setting that we study.

Finally, we stress that by definition the core polytope consists of an exponential number of constraints,
which makes its use in mathematical programs challenging. Fortunately, a separation oracle was introduced
in [12], but still, each call to the separation oracle requires the solution of a welfare optimization problem.
Given these considerations, it is often assumed in the core auction literature that a mechanism has oracle
access to a welfare optimization algorithm. In these cases, the complexity measure is the number of oracle
calls to the welfare optimization problem. Due to [12], one can deduce then a polynomial upper bound for the
number of oracle calls required for the computation of a core point. Obviously, when the underlying welfare
optimization can be solved in polynomial time, the mathematical program can also be solved in polynomial
time. Recently, in [22] a faster algorithm was presented for computing approximate, Pareto-efficient core
payments using only a quasi-linear number of oracle calls. Other algorithms that perform well in practice
but admit no runtime guarantees are proposed in [9, 12].

2 Definitions and Preliminaries

2.1 Single-Parameter Domains and Mechanisms

Our work focuses on mechanisms for binary, single-parameter domains. We consider a set of bidders N =
{1, 2, . . . , n}, who can express a request for some type of service (e.g., request for obtaining a set of goods,
or access to a facility, etc). Each bidder i ∈ N has a single private parameter vi ≥ 0, which denotes the value
derived by bidder i if she is granted the service. The environment is binary in the sense that every bidder will
be either accepted or rejected. For every subset S ⊆ N , we let F(S) ⊆ 2S be the set of feasible allocations
for the bidders of S, i.e., the collection of subsets of bidders that can be granted service simultaneously. We
assume that F(N) is downward-closed, i.e., for every X ∈ F(N) and every Y ⊆ X it holds that Y ∈ F(N).
We also assume that for every S ⊆ T , F(S) ⊆ F(T ).

An auction mechanism M = (X,p), in this setting, when run on the set N of agents, consists of an
allocation algorithm X : Rn

+ 7→ 2N and a payment rule p : Rn
+ 7→ Rn. Initially, the auctioneer collects the
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vector of bids b = (bi)i∈N , where bi denotes the bid declared by bidder i ∈ N (which may differ from vi).
We assume that bi ∈ [0,∞) and that there are no further restrictions on the set of allowed bids. Then,
given a bidding profile b, the auctioneer runs the allocation algorithm to determine a feasible allocation
X(b) ∈ F(N), and the payment rule to determine the payment vector p(b) = (p1(b), . . . , pn(b)), where
pi(b) is the payment requested by bidder i.

We will often need to refer to sub-instances defined by a coalition of bidders. Given a bidding vector b,
and a subset of bidders S ⊆ N , we denote by bS the projection of b on S, i.e., the vector containing the
bids of the members of S. We also denote by b−i the vector of all bids except for some bidder i. Given a
profile b, if we run a mechanismM = (X,p) on a sub-instance defined by S ⊆ N , then X(bS) ∈ F(S) will
denote the resulting allocation and p(bS) will be the corresponding payment vector for the members of S.

We assume that bidders have quasi-linear utilities and hence, given a mechanismM = (X,p), the final
utility of bidder i ∈ N for a profile b is uMi (b) = vi− pi(b) when i ∈ X(b) and 0 otherwise (we enforce that
losing bidders do not pay anything). We say thatM satisfies individual rationality if for every profile b and
for every bidder i ∈ N it holds that uMi (b) ≥ 0. Additionally, a mechanism is truthful, or strategyproof, if
for every bidder i ∈ N , every bi ≥ 0 and every profile b−i it holds that uMi (vi,b−i) ≥ uMi (bi,b−i).

Since we are in a single-parameter environment, in order to design truthful mechanisms, we use the
characterization of Myerson [25]. In particular, we say that an allocation algorithm X is monotone if for
every agent i ∈ N and every profile b, if i ∈ X(b), then i ∈ X(b′i,b−i) for b′i ≥ bi. This means that if an
agent is selected in an allocation by declaring a bid bi, then she should also be selected when declaring a
higher bid.

Lemma 1. Given a monotone allocation algorithm X, there is a unique payment rule p such that M =
(X,p) is an incentive compatible and individually rational mechanism. For every profile b and every bidder
i ∈ N this payment is given by

pi(b) = inf
b′

i
∈[0,bi]

{b′i : i ∈ X(b′i,b−i)}

when i ∈ X(b), and pi(b) = 0 otherwise.

Lemma 1 is known as Myerson’s lemma, and the payments are often referred to as threshold payments, since
they indicate the threshold below which a bidder stops being selected.

2.2 Welfare Maximization and VCG Payments

For a mechanismM = (X,p), the social welfare produced when run on a profile b (from the viewpoint of the
mechanism since each bi may differ from vi) is equal to

∑
i∈X(b) bi. Among the most desirable outcomes in

mechanism design is to select allocations that achieve maximum welfare. In particular, for a profile b ∈ Rn
+,

and for any coalition S ⊆ N the optimal allocation with respect to bS is defined as

X∗(bS) := arg max
T∈F(S)

∑
i∈T

bi (1)

We will denote by W (bS) the maximum social welfare achieved by an optimal allocation. This is also
referred to as the coalitional value of S: W (bS) := maxT∈F(S)

∑
i∈T bi =

∑
i∈X∗(bS) bi. When S = N , we

refer to an optimal allocation by X∗(b) instead of X∗(bN ), and to the optimal welfare by W (b).
Regarding tie-breaking issues, throughout this work, we assume that a deterministic consistent tie-

breaking rule is used to select an allocation, whenever there are multiple optimal allocations at a given
profile. For example a fixed ordering on subsets of bidders would suffice to resolve ties.

Fact 1 Given a bidding vector b, the coalitional value is monotone w.r.t. the set of bidders, i.e. for all
S ⊂ T ⊆ N it holds that W (bS) ≤W (bT ).

A mechanism is called efficient or welfare-maximizing if for every input profile, it outputs an optimal allo-
cation. The VCG mechanism is the most popular example of an efficient mechanism, where for a bidding
profile b, the payment of bidder i ∈ X∗(b) is the externality she imposes to the other bidders (i.e., the loss
to their welfare), defined as

pV CG
i (b) = W (b−i)−

∑
j∈X∗(b)\{i}

bj (2)
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For every other bidder i 6∈ X∗(b), we have pV CG
i (b) = 0. For the settings we study, one can easily check

that the VCG mechanism is individually rational and strategyproof.

2.3 Core-selecting Payment Rules

The notion of the core as a solution concept originates from cooperative game theory where it captures the
fact that coalitions of agents do not have incentives to appeal to a payoff division. To adjust these ideas to
the context of auctions, we first define the following quantity, for every coalition S ⊆ N and bidding profile
b.

β(S,b) := W (bS)−
∑

j∈X∗(b)∩S

bj .

This quantity is a generalization of the VCG payment formula, and can be interpreted as the collective
externality that bidders in N \S impose to the bidders in S. Indeed, with this notation we can restate VCG
payments in Equation (2) as pV CG

i (b) = β(N \ {i},b), for every bidder i ∈ X∗(b).
Core-selecting payment rules were initially defined in the space of utility vectors by [4]. In our work we

follow the equivalent formulation of [11] that recasts them to the space of payment vectors. For a profile b,
the core polyhedron is defined w.r.t. an optimal allocation X∗(b) as follows

CORE(b) = {p ∈ Rn :
∑

j∈X∗(b)\S

pj ≥ β(S,b) ∀S ⊆ N, pj = 0 ∀j 6∈ X∗(b)}. (3)

Definition 1. A payment rule is called core-selecting, if it is individually rational w.r.t. the reported bids,
and p(b) ∈ CORE(b) for every profile b. Furthermore, a mechanism M = (X,p) is a core-selecting
mechanism if (i) X(b) is a welfare-maximizing allocation for every profile b, and (ii) p is a core-selecting
payment rule.

The constraints of the core polytope in (3) require that every coalition of bidders pays at least their collective
externality or, in other words, the damage their presence inflicts on the remaining bidders. To provide more
intuition, another way to view this is that under a core payment vector, and if bidders are truthful, then
every coalition S, together with the auctioneer creates a collective utility at least as high as W (bS), which is
the best they could achieve if they ran an auction among themselves. In more detail, if u0 is the auctioneer’s
utility, which equals

∑
j∈N pj , the core constraint for S in (3) is equivalent to:

u0 +
∑
j∈S

uj(b) ≥W (bS)

Using this formulation, and individual rationality, if the outcome of a mechanism is not in the core, this
implies that u0 < W (bS). Hence, there was a coalition that could offer the auctioneer a higher revenue and
yet this did not happen.

It is easily verifiable that the pay-your-bid auction, where every winning bidder pays her bid, coupled with
the optimal allocation, is a core-selecting mechanism. This rule is sometimes mentioned in the literature as
the seller-optimal core-selecting payment rule since it maximizes the revenue of the auctioneer with respect
to the declared bids. Given that core-selecting mechanisms are not truthful in general, see also [16], a
natural quest has been to identify payments in the core where the incentives to misreport are minimized.
Formalizing this idea, Day and Milgrom [10] proposed the use of Pareto-efficient core payments, which, in
the core-literature are also referred to as bidder-optimal payment rules.
Definition 2 (Pareto-efficient core payments [10]). Let b be a bidding profile and p ∈ CORE(b). We
say that p is a Pareto-efficient core payment if for every payment p′ such that p′i ≤ pi for every bidder
i ∈ X∗(b) with strict inequality for at least one bidder, we have that p′ 6∈ CORE(b).
A prominent class of Pareto-efficient payment rules in the literature are the Minimum Revenue Core-Selecting
(MRCS) rules, i.e., the minimum revenue points in the core, first introduced in [12]. An MRCS rule assigns
payments given a profile b, that are optimal solutions of the linear program:

min
p∈Rn

∑
j∈N

pj : p ∈ CORE(b), p ≤ b

 . (4)
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It is trivial to check that this is indeed a Pareto-efficient core payment rule. We denote by MREV(b) the
optimal value of the objective function in (4). As shown in [10], the minimum core revenue still gives a
better revenue guarantee than VCG, i.e., for a profile b, MREV(b) ≥

∑
i∈N pV CG

i (b). A further advantage of
MRCS rules, established in [12], is that they minimize the total gains from unilateral deviations. Finally, it
is also interesting to note that whenever the VCG payment belongs to the core, it is the unique MRCS rule
1, bacause it is the unique Pareto-efficient point [10]. Otherwise, the linear program in (4) has a continuum
of solutions and a secondary refinement is required in practice to select a particular MRCS payment rule in
a disciplined way. We continue this discussion in Section 5, by studying Quadratic Payment Rules, a class
of core payment rules which are often used as such a refinement.

2.4 Core-competitive Mechanisms

A different approach has been initiated in [15] concerning revenue guarantees in relation to the core out-
comes. Since core-selecting mechanisms are not always truthful (despite their good incentive properties), [15]
proposed the design of truthful mechanisms whose revenue is competitive against a core outcome. Given the
discussion in Section 2.3, it is quite natural to use as a core benchmark the revenue attained by the MRCS
rules. One can evaluate then truthful mechanisms as follows:

Definition 3 ( [15]). LetM = (X,p) be a truthful mechanism. We say that M is α-core-competitive, with
α ≥ 1, if for any bidding profile b it assigns a payment vector p(b) such that

n∑
i=1

pi(b) ≥ 1
α

MREV(b)

We will follow this approach in Section 4 for single-parameter domains.

3 Insights on the Geometry of the Core

The goal of this section is to establish new insights and properties for the core polytope, and in particular
with regard to how the polytope changes when a single bidder declares a higher bid, i.e., we study the relation
between CORE(b) and CORE(b′i,b−i), with b′i > bi for some i ∈ X∗(b). The results we present here will
be the key ingredients to prove the two main results of our work in Section 4 and Section 5.

Throughout this section, we assume that for all payment vectors that we consider, we have set pj = 0 for
every j 6∈ X∗(b), for a profile b. We refer the reader to Appendix A for all the missing proofs of this section.

3.1 Warm up: Pareto-efficiency and Individual Rationality within the Core

According to Definition 1, a core-selecting mechanism must be individually rational with respect to the re-
ported bids. In this section, we show that for Pareto-efficient core-selecting payment rules, we have individual
rationality for free, and there is, in fact, no need for the auctioneer to explicitly enforce the IR constraints.
We start with Lemma 2, which is a straightforward characterization of Pareto-efficient payment rules. It
simply says that for every winning bidder i, at least one core constraint that contains the payment of i must
be satisfied with equality.

Lemma 2. Let b be a bidding profile, and p ∈ CORE(b). The vector p is a Pareto-efficient core payment
if and only if for every bidder i ∈ X∗(b) there exists a coalition S ⊂ N with i 6∈ S such that∑

j∈X∗(b)\S

pj = β(S,b). (5)

We now show that Pareto-efficiency within CORE(b) implies individual rationality with respect to b.

Lemma 3. A payment rule that for any given profile b prescribes a Pareto-efficient vector of payments
p ∈ CORE(b), satisfies pi ≤ bi for every bidder i ∈ X∗(b).
1 In this case the total gains from unilateral deviations are actually 0, as VCG is an incentive compatible mechanism.
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Lemma 3 allows us to omit individual rationality constraints and focus only on the core constraints, when
reasoning about Pareto-efficient payment rules. Moreover, using the fact that MRCS payments are Pareto-
efficient, we can now simplify the linear program of Equation (4).

Corollary 1. A payment rule is MRCS if, given a profile b, it assigns payments that are optimal solutions
of the linear program

min
p∈Rn

∑
j∈N

pj : p ∈ CORE(b)

 . (6)

3.2 The Effects of Unilateral Deviations on the Core

We now aim to understand how the core polytope that forms after a unilateral deviation of a winning bidder
is related to the initial core polytope. Initially, we focus on how each of the constraints in the polytope is
modified and perform a sensitivity analysis for the term β(S,b), the collective externality that appears in
the core constraints in (3), for every S ⊆ N . Hence, for a given profile b, a bidder i ∈ X∗(b) and a bid
b′i > bi, we are interested in the relationship between β(S,b) and β(S, (b′i,b−i)).

To proceed, our analysis will be dependent on the following quantity, defined for an input profile b, a
bidder i ∈ X∗(b), and a coalition S ⊆ N with i ∈ S.

ti(bS\{i}) = min{z : ∃T ⊆ S, s.t. i ∈ T and
∑

j∈T\{i}

bj + z = W (z,bS\{i})} (7)

The term ti(bS\{i}) is the minimum bid i should declare to be included in some optimal allocation in
an auction where only the bidders from S are present. This is precisely the Myerson threshold payment, for
mechanisms where the allocation algorithm produces an optimal allocation when run on input profile bS .
Namely2, if i ∈ X∗(bS), then ti(bS\{i}) = pV CG

i (bS). The following simple lemma can be easily established
for the optimal welfare of coalition S.

Lemma 4. Given a bidding vector b, a bidder i ∈ X∗(b) and a bid b′i such that 0 ≤ b′i ≤ ti(bS\{i}), it holds
that

W (b′i,bS\{i}) = W (bS\{i}). (8)

The following key lemma encapsulates the effects on the collective externality of S by a unilateral deviation
of a bidder i ∈ S.

Lemma 5 (Sensitivity analysis for β(S,b)). Let b be a bidding profile. Fix a bidder i ∈ X∗(b), and a
coalition S ⊆ N . Suppose that bidder i unilaterally deviates to b′i > bi. Then:

1. If i 6∈ S or if i ∈ S and bi ≥ ti(bS\{i}) then

β(S, (b′i,b−i)) = β(S,b). (9)

2. If i ∈ S and bi < ti(bS\{i}) then

β(S, (b′i,b−i)) = β(S,b)− (min{b′i, ti(bS\{i})} − bi) (10)

Proof. Since the optimal allocation algorithm is monotone and i ∈ X∗(b), it holds that X∗(b′i,b−i) = X∗(b),
for b′i > bi. We distinguish the following cases concerning bidder i and the coalition S:

1. i 6∈ S: Then bidder i has no influence on β(S,b). By the monotonicity of the allocation algorithm, we
have

β(S, (b′i,b−i)) = W (bS)−
∑

j∈X∗(b′
i
,b−i)∩S

bj = W (bS)−
∑

j∈X∗(b)∩S

bj = β(S,b).

2 It can also happen that due to tie-breaking, X∗(bS) does not coincide with T from (7), and thus i 6∈ X∗(bS), in
which case ti(bS\{i}) 6= pV CG

i (bS) = 0.
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2. i ∈ S and bi ≥ ti(bS\{i}): By the definition of ti(bS\{i}), we know there exists an optimal allocation
T ∈ F(S) with respect to bS , and with i ∈ T . Hence

∑
j∈T bj = W (bS) =

∑
j∈X∗(b) bj . By the

monotonicity of the optimal allocation algorithm, it is true that T is also optimal with respect to
(b′i,bS\{i}), for all b′i > bi. For brevity in the algebraic manipulations below, we denote by X∗ the
optimal allocation X∗(b). Hence,

β(S, (b′i,b−i)) = W (b′i,bS\{i})−
∑

j∈X∗∩(S\{i})

bj − b′i =
∑

j∈T\{i}

bj + b′i −
∑

j∈X∗∩(S\{i})

bj − b′i

=
∑

j∈T\{i}

bj + bi −
∑

j∈X∗∩(S\{i})

bj − bi = W (bS)−
∑

j∈X∗∩S

bj = β(S,b).

The second equality holds because X∗(b′i,b−i) = X∗(b), and the third equality follows since we argued
that T is also optimal for (b′i,bS\{i}).

3. i ∈ S and bi < ti(bS\{i}): In this case, bidder i ∈ X∗(b) is not included in any optimal allocation with
respect to bS . We need to consider two subcases. When b′i ≤ ti(bS\{i}) we have:

β(S, (b′i,b−i)) = W (b′i,bS\{i})−
∑

j∈X∗∩(S\{i})

bj − b′i = W (bS\{i})−
∑

j∈X∗∩(S\{i})

bj − b′i

= W (bS)−
∑

j∈X∗∩S

bj − (b′i − bi) = β(S,b)− (b′i − bi). (11)

The second and the third equalities follow from Lemma 4, since both b′i ≤ ti(bS\{i}) and bi < ti(bS\{i}).
In the second subcase, when b′i > ti(bS\{i}), the unilateral deviation of i enables her to be included in
an optimal allocation among bidders in S. Then, we can see that

β(S, (b′i,b−i)) = β(S, (ti(bS\{i}),b−i)) = β(S,b)− (ti(bS\{i})− bi).

The first equality above follows by applying Equation (9) for the profile (ti(bS\{i}),b−i), whereas the
second equality follows from Equation (11), using b′i = ti(bS\{i}). Summarizing the two subcases, we
obtain β(S, (b′i,b−i)) = β(S,b)− (min{b′i, ti(bS\{i})} − bi), which completes the proof. ut

Lemma 5 enables us to prove the two theorems that follow. The first theorem says that for binary single-
parameter domains, when a winning bidder declares a higher bid, the space of core payments can only get
larger.

Theorem 1. Let b be a bidding profile and i ∈ X∗(b). Then, for every b′i > bi, CORE(b) ⊆ CORE(b′i,b−i).

Proof. Note first that for b′i > bi, since the optimal allocation algorithm is monotone and i ∈ X∗(b), it holds
that X∗(b′i,b−i) = X∗(b). Consider now a vector p in CORE(b). We will show that p is also a member of
CORE(b′i,b−i). This is equivalent to showing that for every S ⊆ N , p satisfies∑

j∈X∗(b)\S

pj ≥ β(S, (b′i,b−i)).

When S ⊆ N is a coalition such that either i 6∈ S or i ∈ S and bi ≥ ti(bS\{i}), then by Lemma 5, we
immediately have ∑

j∈X∗(b)\S

pj ≥ β(S,b) = β(S, (b′i,b−i)).

On the other hand, when i ∈ S and bi < ti(bS\{i}), then again by Lemma 5 (Equation (10)), and since
p ∈ CORE(b), we obtain∑

j∈X∗(b)\S

pj ≥ β(S,b) = β(S, (b′i,b−i)) + min{b′i, ti(bS\{i})} − bi > β(S, (b′i,b−i)),

where the last inequality follows from the facts that b′i > bi and ti(bS\{i}) > bi. ut
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We note that the set inclusion claimed in Theorem 1 can be strict, i.e., there exists a bidding profile b, a
bidder i ∈ X∗(b) and a b′i > bi such that CORE(b) ⊂ CORE(b′i,b−i). An example is included in Appendix
A (in the proof of Proposition 1).

The next theorem says that in order to obtain a payment that is in the enlarged polyhedron after a
bidder’s deviation, the deviating bidder should be charged a payment that exceeds her previous bid.

Theorem 2. Let b be a bidding profile and fix a bidder i ∈ X∗(b). For b′i > bi, let p ∈ CORE(b′i,b−i) be
a payment vector with pi ≤ bi. Then, p ∈ CORE(b).

Theorem 2 will be particularly useful in Section 5.

3.3 A Comment on Revenue Monotonicity of MRCS

Theorem 1 has the following corollary for MRCS core payments, defined in (6).

Corollary 2. Let b be a bidding profile. Suppose bidder i ∈ X∗(b), and let b′i > bi. Then

MREV(b′i,b−i) ≤ MREV(b). (12)

Proof. Let p∗ ∈ CORE(b) be an MRCS payment (an optimal solution to the linear program in Equation
(6)) for the profile b. Moreover, let p′ ∈ CORE(b′i,b−i) be an MRCS solution for the profile (b′i,b−i). By
Theorem 1, it is true that every feasible payment vector p ∈ CORE(b) is also in CORE(b′i,b−i). Therefore,
since p∗ ∈ CORE(b), we have that p∗ ∈ CORE(b′i,b−i). Hence,

MREV(b) =
∑
j∈N

p∗j ≥
∑
j∈N

p′j = MREV(b′i,b−i).

The inequality follows since p′ is an optimal solution for MRCS, a linear program with a minimization
objective, for the profile (b′i,b−i). ut

Corollary 2 states that a higher willingness to pay by a winning bidder will never lead to an increase
of the auctioneer’s revenue under MRCS, for all binary single-parameter auctions. This result may look
counter-intuitive on a first reading, especially for instances where (12) is satisfied with strict inequality. In
the literature, this phenomenon is commonly mentioned as a violation of revenue-monotonicity. There are
several facets in studying revenue monotonicity, as it concerns the effects on the revenue when adding new
bidders, or increasing the offers of the current bidders, or more generally when changing some parameter of
the auction. The version we consider here is referred to as bidder revenue monotonicity [5].

Pareto-efficient rules that assign payments in the core have been known to be susceptible to violating this
property. Namely, it has been shown by [5, 23] that in a multi-parameter domain with at least three items,
revenue-monotonicity is violated. Here, we strengthen these results by showing that revenue-monotonicity
can be violated in single-parameter auctions as well: we construct instances with single-minded bidders,
where a unilateral bid increase by a winning bidder strictly decreases the MRCS revenue.

Proposition 1. In binary single-parameter auction environments, there exists examples where MRCS rules
violate revenue-monotonicity, i.e., Equation (12) is satisfied with strict inequality.

Aside from this discussion, and quite surprisingly, Corollary 2 also plays a crucial role in the analysis of
a core-competitive mechanism that we present in Setion 4.

4 An O(log n)-core-competitive Strategyproof Mechanism

In this section, we present a first application of the properties we derived in Section 3. We move away
from core-selecting mechanisms with the goal of designing truthful mechanisms that achieve a good revenue
approximation with respect to core outcomes. Our main result is a deterministic, truthful mechanism that is
also O(logn)-core-competitive with respect to the MRCS benchmark. Although we are not analyzing core-
selecting mechanisms in this section, the properties of the core, identified in Section 3 (namely Corollary 2
of Theorem 1), will still come in handy for the analysis of our mechanism.
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Mechanism M̂ = (X̂, p̂).

Input: A value profile v ∈ Rn
+.

Output: An allocation X̂(v) ∈ F(N) and a vector of payments p̂(v).

1. Find an optimal allocation X∗(v). Let m = |X∗(v)|.
2. Let s1, . . . , sm be an ordering of the bidders in X∗(v) such that vs1 ≥ · · · ≥ vsm . Let k ≤ m be the largest index

such that
k · vsk ≥

MREV(v)
Hn

. (13)

3. Set X̂(v) = {s1, . . . , sk} and p̂(v) according to Myerson’s Lemma (Lemma 1).

Fig. 1. An O(log n)-core-competitive and strategyproof mechanism.

The mechanism is described in Figure 1, where we have used the real valuation profile for the bidders,
b = v (since we will establish that the mechanism is truthful). We also denote the n-th harmonic number
by Hn =

∑n
i=1 1/i = Θ(logn). In the first step, we find a welfare-maximizing allocation. However, instead

of allocating to all bidders in the optimal solution, in the second step the mechanism disqualifies some
bidders with values that do not meet a certain cutoff. In case of ties in step 2, it suffices to have a consistent
deterministic tie-breaking rule, e.g., given by an ordering on the set of bidders. The mechanism tries, in some
sense, to be as inclusive as possible, as long as the value of the last member of X̂(v) is not too small for the
coalition to collectively miss the cutoff.

The main result of this section is the following:

Theorem 3. The mechanism M̂ is individually rational, truthful, and O(logn)-core-competitive.

Sections 4.2 and 4.3 are devoted to the proof of Theorem 3 and all the missing proofs are in Appendix
B. Before proceeding to the proof, we discuss some aspects of the mechanism, and comparisons with other
results.

4.1 Remarks on Tightness, Complexity and Other Implications

Our mechanism is applicable to all binary single-parameter auction domains with a downward-closed set of
feasible allocations F(N). In particular, for environments where the VCG payments are not in the core, such
as environments that exhibit complementarities or where the set F(N) is not a matroid, our mechanism is the
only known deterministic strategyproof mechanism that is competitive with regard to the MRCS benchmark
for arbitrary binary single-parameter domains.

Prior to our work, a randomized, exponential, strategyproof mechanism was known that is also O(logn)-
core-competitive [24]. Their result is based on establishing competitiveness against a stronger benchmark,
which is the maximum welfare that can be achieved when the highest bidder is ignored. We point the reader
to [15] for more detailed comparisons with MRCS. What we find most valuable in obtaining our deterministic
matching upper bound is that it yielded a better understanding of the core polytope, through the properties
identified in Section 3. On the other hand, the randomized mechanism of [24] does not reveal any further
structural properties for the core, since it is centered around a different benchmark. Moreover, our result
provides a strict separation on the performance of the two benchmarks, since [24] show that deterministic
mechanisms cannot perform better than Ω(n) for their benchmark even for single-parameter domains. Hence,
our mechanism illustrates that the benchmark of [24] is much more stringent, whereas the core benchmark
is more amenable to multiplicative approximations and might be more suitable for revenue maximization.

Regarding complexity, our mechanism clearly has a worst-case exponential running time, because it
requires the computation of an optimal allocation and of MREV(b). As already discussed in Section 1.1,
the bottleneck of having to solve the welfare maximization problem for various subsets of bidders is not
uncommon in the core auction literature, and it is often assumed that the mechanism has oracle access to a
welfare maximization algorithm. Given the results derived in [12] for computing MREV(b), we can conclude
that our mechanism can be implemented with a polynomial number of oracle calls to welfare maximization.
Faster algorithms have also been proposed for MREV(b), e.g., [22], but these compute ε-bidder-optimal core
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points and hence are not suitable for our mechanism. Finally, [12] implies that for settings where there exist
efficient algorithms for welfare optimization, our mechanism is also implementable in polynomial time. As
examples, we mention that this is the case (i) for the Text-and-Image setting of [15], (ii) for Maximum
Weight Matching auctions, where bidders represent the edges of a graph and optimal welfare corresponds
to a maximum matching3. Both of these settings are of interest to us since they possess complementarities,
hence there are no truthful mechanisms in the core.

As for tightness, recall that for a given value profile v, the mechanism selects as the set of winning
bidders, a subset of the optimal allocation X∗(v). Related to this, for the special case studied in [15], the
authors show that for mechanisms that output as an allocation a subset of an optimal allocation, O(logn)-
core-competitiveness is the best one can hope for. This implies that our result is tight, and among such
mechanisms, it achieves the best possible core-competitiveness .

4.2 Feasibility and Monotonicity of X̂

To show that the mechanism always outpiuts a feasible allocation, we use the fact that for a given v,
X̂(v) ⊆ X∗(v). Since the optimal allocation X∗(v) ∈ F(N) and since we have assumed that F(N) is
downward-closed, then X̂(v) is feasible.

Moreover, we claim that the allocation algorithm X̂ always outputs a non-empty allocation, i.e., the cutoff
set in (13) is always achievable by at least one index k ∈ {1, . . . , |X∗(v)|}. To prove this claim, we define
first for a vector of values v1 ≥ v2 ≥ · · · ≥ v`, the maximum uniform price revenue as maxj∈{1,...,`} j · vj .
The following is a well known lower bound on the uniform price revenue, proposed by [18].

Lemma 6 (Due to [18]). Given v1 ≥ · · · ≥ v`, it holds that maxj∈{1,...,`} j · vj ≥
1
H`

∑̀
i=1

vi.

Using this, we can now prove a lower bound in terms of the MRCS revenue.

Lemma 7. Let v be a value profile, and m = |X∗(v)|. Let s1, s2, . . . sm be an ordering of the bidders in
X∗(v) by their value in a non-increasing order. Then

max
j∈{1,...,m}

j · vsj
≥ MREV(v)

Hn

Proof. Let p ∈ CORE(v) be a core payment of minimum revenue, i.e.
∑

j∈X∗(v) pj = MREV(v). By invoking
Lemma 6 on the values vs1 ≥ vs2 ≥ · · · ≥ vsw we have

max
j∈{1,...,m}

j · vsj
≥

∑
j∈X∗(v) vj

Hm
≥

∑
j∈X∗(v) vj

Hn
≥

∑
j∈X∗(v) pj

Hn
= MREV(v)

Hn
.

The last inequality follows from the fact that the family of MRCS payment rules are individually rational. ut

Lemma 7 directly implies that our proposed mechanism always outputs a non-empty solution, i.e., the cutoff
value set in (13) will be satisfied by at least one index.
We now show that the allocation algorithm X̂ is monotone. Lemma 8 will be the key to establish this
argument, which is in turn based on Corollary 2 from Section 3. Lemma 8 states that when a winning bidder
increases her bid, the allocation algorithm X̂ may only increase the number of bidders it serves.

Lemma 8. For every value profile v, bidder i ∈ X̂(v) and every v′i > vi it holds that

|X̂(v)| ≤ |X̂(v′i,v−i)|.

Proof. Suppose for contradiction that this is not true, i.e. there exists a profile v with a bidder i ∈ X̂(v) and a
bid v′i > vi for which |X̂(v)| > |X̂(v′i,v−i)|. Since i ∈ X∗(v) and due to the fact that the welfare-maximizing
algorithm is monotone, it holds that i ∈ X∗(v′i,v−i) as well. Let s be the ordering of the players in X∗(v),
3 These auctions can be motivated by facility location and franchising considerations. The auctioneer can be seen as
a company aiming to place stores that should not be on the same neighborhood or on the same street.
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produced by the mechanism at step 2, on input v, and let s′ be the corresponding ordering of bidders in
X∗(v′i,v−i) on input (v′i,v−i). Let k = |X̂(v)| and k′ = |X̂(v′i,v−i)|. By our assumption, k′ < k. Bidder
i can only be at a lower index in the ranking s′ compared to her position at s, since she has unilaterally
deviated to v′i > vi. This implies that vs′

k
≥ vsk

. To verify this, either the bidder at position k in s′ has
remained the same but with equal or higher value (in case bidder i is at position k) or bidder i has moved
up in the ranking and it has displaced some bidder with a higher value, i.e., with an initial index sj < sk to
position k. However, this yields

k · vs′
k
≥ k · vsk

≥ MREV(v)
Hn

≥ MREV(v′i,v−i)
Hn

.

The second inequality follows from what we have assumed for the execution of the mechanism on input v,
whereas the third inequality follows from Equation (12) of Corollary 2. This means that k bidders can still
be served on input (v′i,v−i), and hence k′ is not the largest index of bidders who can meet the cutoff of (13)
under (v′i,v−i). This is a contradiction and it concludes the proof. ut

We now prove that the allocation algorithm X̂ is monotone.
Lemma 9. The allocation algorithm X̂ is monotone, i.e., given a profile v, for every bidder i ∈ X̂(v) and
every v′i > vi it is true that i ∈ X̂(v′i,v−i).
Remark 1. Note that we only use the quantity MREV(v) for determining a cutoff point in step 2 of the
mechanism. We do not use the individual MRCS payments that arise by the computation of MREV(v)
(which on their own would not yield a truthful mechanism).

4.3 Payments and Revenue Guarantee
By Lemma 9 the allocation rule X̂ is monotone and hence, by Myerson’s Lemma, each bidder must pay her
threshold price, to obtain a mechanism that is incentive compatible and individually rational in a single-
parameter setting. Hence, with regard to the proof of Theorem 3, the only statement we are left to prove
is that M̂ = (X̂, p̂) is O(logn)-core-competitive. Lemma 10 provides a relationship that is satisfied by the
threshold payment of each winning bidder and that will be crucial to obtain this revenue guarantee.
Lemma 10. Given a value profile v, the threshold payment p̂i(v) of every bidder i ∈ X̂(v) for the mechanism
M̂ = (X̂, p̂) satisfies p̂i(v) ≥ pV CG

i (v) and, additionally,

p̂i(v) ≥ MREV(p̂i(v),v−i)
|X̂(p̂i(v),v−i)| ·Hn

. (14)

Proof. Fix a bidder i ∈ X̂(v). By definition, her threshold payment p̂i(v) is the minimum bid v′i ≤ vi

she can unilaterally deviate to, so that i ∈ X̂(v′i,v−i)4. Recall that, for every profile v, the first step of
the allocation algorithm X̂ is to find the optimal allocation X∗(v). Hence, since by Myerson’s Lemma, the
threshold payments for the algorithm X∗ are the VCG payments, we can establish that p̂i(v) ≥ pV CG

i (v).
To prove (14), consider a bid v′i which also survives step 2, so that i ∈ X̂(v′i,v−i). In order for i to be

included in an optimal allocation, v′i must be large enough so that Equation (13) is satisfied for the profile
(v′i,v−i). Suppose v′i = p̂i(v). Let s′ be the ordering of the bidders produced by step 2 of the mechanism,
and let k = |X̂(p̂i(v),v−i)|. By Equation (13) it holds that

k · vs′
k
≥ MREV(p̂i(v),v−i)

Hn
⇔ vs′

k
≥ MREV(p̂i(v),v−i)

k ·Hn
. (15)

Additionally, since i ∈ X̂(p̂i(v),v−i), her bid cannot be smaller than the bid of the last bidder included in
X̂(p̂i(v),v−i), as otherwise she would not win. Therefore, p̂i(v) ≥ vs′

k
and the proof follows by combining

this fact with Equation (15). ut
We can now prove the revenue guarantee and conclude the proof of Theorem 3.
Lemma 11. The mechanism is O(logn)-core-competitive.
4 Actually, one needs to be a bit more careful with the analysis since the threshold price is the infimum over the set
of bids that make bidder i a winner. This leads to a more detailed technical analysis, which we defer to the full
version of this work.
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5 A Class of Non-decreasing Quadratic Payment Rules

In this section, we illustrate a second application of our results of Section 3, focusing on an important family
of quadratic core-selecting payment rules.

5.1 Quadratic Payment Rules

As we have mentioned in Section 2, when VCG payments are not in the core, the solution space of MRCS
payments is always a continuum, in which case the linear program of Equation (4) has infinitely many
solutions. Even though, as discussed in Section 2, all these solutions in this face of the core polytope,
have been shown in [12] to minimize the gain of deviating, the question remained whether one of these
points should be preferred over others and whether there is a disciplined way to single out a solution. This
motivated [11,13] to propose a class of core-selecting mechanisms, based on the idea of picking the point on
the minimum revenue face of the core that is the closest in Euclidean distance to a given reference point in
the vector space. This payment rule can be expressed using two mathematical programs: the linear program
of Equation (6) to compute first MREV(b), and then a quadratic program, as defined below.

Definition 4. Let r ∈ Rn
+. We call a payment rule r-nearest when, for every vector b, it assigns the payment

pr(b) = arg min
p∈Rn

 ∑
j∈X∗(b)

(pj − rj)2 : p ∈ CORE(b),
∑

j∈X∗(b)

pj = MREV(b)

 . (16)

In words, the quadratic program of (16) assigns for a bidding profile b, the MRCS payment in the core that is
the closest to a given vector r. Alternatively, this quadratic program can be also defined without the MRCS
constraint. In this case, it has been shown in [28] that the minimum revenue may not be achieved for certain
reference points even for minimization objectives that result to Pareto-efficient payments. In this section,
we stick to the version that contains the MRCS constraint. Moreover, since the quadratic program in (16)
expresses a minimization of Euclidean distance from a convex set to a fixed point, the following well-known
fact is true.

Fact 2 Given vectors r and b, the payment vector pr(b) is unique.

A number of vectors have been proposed as the reference point r, for this class of payments. Initially,
in [11] Day and Cramton used the VCG payments for a reference point, r = pV CG(b), as a refinement of
MRCS. The motivation of this choice was the findings of [28] who observed that given a profile b and a
payment p ∈ CORE(b) the quantity pi− pV CG

i (b) represents the bidder’s "residual incentive to misreport".
Hence, minimizing this quantity (or rather, its square) seemed a reasonable choice within MRCS with good
incentives. In parallel to this, Erdil and Klemperer [13], developed a different perspective of what r should be.
They leaned more towards constant payment rules with reference points that do not depend on the bidding
profile, as their goal was to minimize marginal incentives to deviate. One well-studied and intuitive example
is the 0-nearest mechanism: pick the point in MRCS that is closest to 0. Yet another perspective was given
in [3] who have proposed the b-nearest payment rule, i.e., the MRCS payments closest to the actual bid.
Overall, quadratic rules form a family of core-selecting mechanisms with many deployments in practice in
several countries, especially for spectrum and other public sector auctions [11].

5.2 A Class of Non-Decreasing Quadratic Payment Rules

We now consider the following desirable property for payment rules.

Definition 5. A payment rule is called non-decreasing, if for every profile b, every bidder i ∈ N and every
b′i > bi it holds that

pi(b′i,b−i) ≥ pi(b). (17)
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This notion has been defined independently in [13] and [7], with a different motivation in mind. In [13], it
is argued that payment rules satisfying this property5 weakly dominate all other payment rules in terms of
the so called marginal incentive to deviate. Hence, even though such mechanisms may not be truthful, they
possess very desirable incentive guarantees. In [7], another advantage of this property is highlighted, which
is of computational nature: limiting our attention to non-decreasing payment rules makes the daunting task
of computing Bayes Nash equilibria much simpler.

Hence, it becomes important to understand which mechanisms satisfy this property. It can be seen that
the VCG mechanism and the pay-your-bid auction do satisfy (17). In the context of MRCS rules, it is shown
in [7], that pV CG-nearest is not non-decreasing. To our knowledge, it has remained an open question whether
there exist MRCS rules that satisfy (17).

We answer this question in the affirmative, by providing a class of quadratic rules that are non-decreasing.
To proceed, given a vector b, for all i ∈ N , define fi(bi) to be any non-decreasing function of bi. Let
f(b) = (f1(b1), . . . , fn(bn)). The following is the main result of this section.

Theorem 4. For every f = (f1(·), . . . , fn(·)), where each fi(·) is a non-decreasing function of bi, the f(b)-
nearest payment rule is non-decreasing for binary single-parameter auction domains.

Notice that the class of f(b)-nearest rules captures both the well known 0-nearest and b-nearest mechanisms
that were advocated by [13] and [3] respectively.

Corollary 3. The 0-nearest and the b-nearest payment rules are both non-decreasing for binary single-
parameter auction domains.

The proof of Theorem 4, is based on both Theorem 1 and Theorem 2 from Section 3. We present it in
Appendix C.

6 Conclusions and Future Research

We believe our results shed more light on understanding core-selecting and core-competitive mechanisms, and
expect that some of the properties established here (e.g. the properties of the core polyhedron in Section 3, or
the analysis of quadratic rules in Section 5) can be of independent interest, and with a broader applicability.

There are still several interesting avenues for further investigation. Regarding core-selecting mechanisms,
the recent experimental evaluation of [8] has fueled even more the debate of identifying the most appropriate
MRCS rules. We find the notion of non-decreasing payment rules, defined in Section 5, to be a suitable
refinement of MRCS towards this direction. It would therefore be interesting to better understand or even
to characterize which MRCS rules can satisfy this property.

Regarding the design of truthful mechanisms that are core-competitive, the literature is still very scarce
on this, and it would be very desirable to identify special cases of single parameter domains, where one can
achieve better than O(logn)-competitiveness, such as the Text and Image setting of [15]. Generalizations to
multi-parameter domains would also be enlightening.
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A Missing Proofs from Section 3

Proof of Lemma 2.
(⇒) For every bidder i ∈ X∗(b), let Si ⊂ N be a coalition that satisfies (5) and does not include bidder i.
Suppose for contradiction that p is not Pareto-efficient. Then, there exists a bidder k ∈ X∗(b) and a p′k < pk

such that (p′k,p−k) ∈ CORE(b). However, this vector of payments cannot be feasible since∑
j∈X∗(b)\(Sk∪{k})

pj + p′k <
∑

j∈X∗(b)\Sk

pj = β(Sk,b),

which is a violation of the core constraint in (3) for the coalition Sk. This implies that (p′k,p−k) 6∈ CORE(b),
a contradiction.

(⇐) Suppose for contradiction that there exists a bidder k ∈ X∗(b) such that for every coalition S ⊂ N ,
that does not include k, Equation (5) does not hold, i.e.∑

j∈X∗(b)\S

pj > β(S,b).

Then, there exists a p′k < pk such that the payment (p′k,p−k) satisfies the core constraint for every coalition
S ⊂ N that does not include bidder k. This implies that (p′k,p−k) ∈ CORE(b), (since the remaining core
constraints for coalitions that contain k are satisfied by the fact that p belongs to the core). But this means
that p is not Pareto-efficient, a contradiction. ut

Proof of Lemma 3.
Given a vector b, let p ∈ CORE(b) be a Pareto-efficient payment. Fix a bidder i ∈ X∗(b). Since p is

Pareto-efficient, by Lemma 2 there exists a coalition S ⊆ N that does not include i for which
∑

j∈X∗(b)\S

pj = β(S,b).

We distinguish the following cases:

1. S = N \ {i}. In this case, bidder i is asked to pay precisely her VCG payment since∑
j∈X∗(b)\(N\{i})

pj = pi = β(N \ {i},b) = pV CG
i (b) ≤ bi

and the last inequality holds since VCG is an individually rational mechanism, due to Fact 1.

2. S ⊂ N \ {i}. Consider the coalition S ∪ {i} ⊂ N . Since p ∈ CORE(b), by (3) we have∑
j∈X∗(b)\(S∪{i})

pj ≥ β(S ∪ {i},b) = W (bS∪{i})−
∑

j∈X∗(b)∩(S∪{i})

bj ≥W (bS)−
∑

j∈X∗(b)∩S

bj − bi

= β(S,b)− bi =
∑

j∈X∗(b)\S

pj − bi.

The second inequality follows from Fact 1 and the last equality from the fact that S satisfies Equation
(5) by assumption. By rearranging terms we obtain that pi ≤ bi. ut

Proof of Lemma 4.
When b′i < ti(bS\{i}), by the definition of ti(bS\{i}) in Equation 7, bidder i is not included in any optimal
allocation when only bidders in S are present. Therefore, since i does not generate any value to the coalition
S, her existence might as well be ignored and equation (8) holds.

When b′i = ti(bS\{i}), even though by the definition of b̄i(S) bidder i is included in an optimal allocation
for the auction among bidders in S, we claim that at the same time there exists another optimal allocation
when only bidders in S are present that does not include i.

Suppose for contradiction that this is not the case. This means that bidder i belongs to all optimal
allocations among bidders in S when bidding ti(bS\{i}) against the bids bS\{i}. Then, bidder i can bid
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ti(bS\{i}) − ε for a sufficiently small ε > 0 and remain a member of all optimal allocations among bidders
in S. This, however, is a contradiction, since ti(bS\{i}) is defined as the minimum bid i can issue and be a
part of one optimal allocation for set S.

Therefore, since there exists an optimal allocation among bidders in S without i for the profile (ti(bS\{i}),bS\{i}),
the coalitional value W (ti(bS\{i}),bS\{i}) can be achieved by the bidders of this particular optimal alloca-
tion that does not include i. Hence bidder i can be ignored and equation (8) still holds. ut

Proof of Theorem 2. Suppose for contradiction that this is not true, i.e. for a deviating bidder i ∈ X∗(b)
there exists a payment profile p ∈ CORE(b′i,b−i) with pi ≤ bi such that p 6∈ CORE(b). This implies that
there exists a coalition S ⊆ N for which the constraint in (3) is violated, i.e.∑

j∈X∗(b)\S

pj < β(S,b). (18)

If S is a coalition with i 6∈ S or i ∈ S but with bi ≥ ti(bS\{i}), since p ∈ CORE(b′i,b−i), by equation (3) we
obtain ∑

j∈X∗(b)\S

pj ≥ β(S, (b′i,b−i)) = β(S,b),

where the last equality is due to (9) of the Key Lemma. However, this contradicts inequality (18).
Consider now the case when coalition S is such that i ∈ S and bi < ti(bS\{i}). Note that this implies that S
cannot be the singleton coalition {i}, as the minimum bid i must bid to be in an optimal allocation on her
own is 0, and we would have bi < 0. Consider the constraint S \ {i}. We have∑

j∈X∗(b)\S

pj + pi ≥ β(S \ {i}, (b′i,b−i))

= W (bS\{i})−
∑

j∈X∗(b)∩(S\{i})

bj

= W (bS)−
∑

j∈X∗(b)∩S

bj + bi = β(S,b) + bi. (19)

The inequality follows from applying (3) for the constraint S \ {i} and the second equality from Lemma 4,
since bi < ti(bS\{i}). By combining inequalities (18) and (19) we obtain

β(S,b) + bi < pi + β(S,b),

which is a contradiction. ut

Proof of Proposition 1. Consider the following combinatorial auction with 6 single-minded bidders and
3 items for sale, M = {A,B,C}. For i = 1, . . . , 6 we denote by bi(T ) the bid of i for the set of items
T ⊆ {A,B,C}. Since bidders are single-minded, each bidder declares a single bid of this form. The bids and
demands are summarized below:

b1({A}) = 9.5
b2({B}) = 6
b3({C}) = 6

b4({A,B}) = 15
b5({A,C}) = 15
b6({B,C}) = 11

An allocation is feasible when each of the three items is assigned to a unique bidder. For instance, bidders
1 and 4 cannot be a part of a feasible allocation. For the vector b above, it is easy to see that the welfare-
maximizing allocation algorithm assigns {A,B,C} to bidders X∗(b) = {1, 2, 3}. Per Equation (6), the MRCS
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linear program with variables p1, p2, p3 is:

minimize p1 + p2 + p3

subject to p1 ≥ 9
p2 ≥ 5.5
p3 ≥ 5.5
p1 + p2 ≥ 15
p1 + p3 ≥ 15
p2 + p3 ≥ 11
p1 + p2 + p3≥ 15

Recall that each of the constraints is defined in Equation (3) of Section 2. For the instance above, it is easy
to compute the minimum revenue of the auctioneer (the value of the objective funtion) by taking all the
combinations of the MRCS constraints and observing that one set of constraints that must be satisfied by
equality are p2 ≥ 5.5 and p1 + p3 ≥ 15 which, combined yield that

(p1 + p3) + (p2) ≥ 20.5.

Hence, MREV(b) = 20.5.
Now suppose that bidder 1 unilaterally declares b′i({A}) = 10 > 9.5. The optimal allocation remains

X∗(b1,p−1) = {1, 2, 3}. However, the new MRCS LP becomes:

minimize p1 + p2 + p3

subject to p1 ≥ 9
p2 ≥ 5
p3 ≥ 5
p1 + p2 ≥ 15
p1 + p3 ≥ 15
p2 + p3 ≥ 11
p1 + p2 + p3≥ 15

Once again, we consider all combinations of constraints. we see that since this time the VCG constraints of
bidders 2 and 3 have been relaxed ,the "blocking" constraints are all greater than all or equal to 20 or strictly
weaker. Hence, MREV(b′i,b−i) = 20 < 20.5 = MREV(b) and the proof follows. Note that this example also
implies that the core polytope strictly increases its solution space (Theorem 1). For example, the solution
10, 5, 5 is now feasible, whereas when bidder 1 was bidding 9.5 this was not possible as it violated individual
rationality ut

B Missing Proofs from Section 4

Proof of Lemma 9.
Given a profile v, fix a bidder i ∈ X̂(v). Suppose this bidder unilaterally declares a bid v′i > vi. We will

show that bidder i remains in the set of final winners X̂(v′i,v−i) for v′i > vi. Recall that the mechanism we
propose, given a profile v finds an initial provisional allocation X∗(v) and then selects a X̂(v) ⊆ X∗(v).
Hence, for all v′i > vi we need to argue both that i ∈ X∗(v′i,v−i) and i ∈ X̂(v′i,v−i).

For the first step, monotonicity is implied by the fact that the allocation algorithm X̂ calls X∗, and since
the welfare-maximizing algorithm X∗ is monotone it holds that i ∈ X∗(v′i,v−i) for all v′i > vi.

For the second step, Since bidder i has unilaterally declared a bid v′i > vi we can be certain her index in
the ranking among bidders in X∗(v) = X∗(v′i,v−i) can only be lower. By Lemma 8 we know that |X̂(v)| ≤
|X̂(v′i,v−i)|, which implies that the allocation algorithm has picked a superset of X̂(v). Nevertheless, bidder
i will be a part of the new optimal allocation X̂(v′i,v−i). ut

Proof of Lemma 11.
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Given a vector v, the total revenue of the auctioneer is the sum of the threshold payments of bidders in
X̂(v). Recall that for every bidder i 6∈ X̂(v), by Myerson’s Lemma p̂i(v) = 0. Hence, we can lower bound
the total revenue of the auctioneer as follows:∑

j∈X̂(v)

p̂j(v) ≥
∑

i∈X̂(v)

MREV(p̂i(v),v−i)
|X̂(p̂i(v),v−i)| ·Hn

≥
∑

i∈X̂(v)

MREV(v)
|X̂(p̂i(v),v−i)| ·Hn

≥
∑

i∈X̂(v)

MREV(v)
|X̂(v)| ·Hn

= MREV(v)
Hn

.

The first inequality follows from Lemma 10 (Equation (14)). To obtain the second inequality, for every
bidder i ∈ X̂(v) we apply Corollary 2 for the profile (p̂i(v),v−i). Note that the vector (p̂i(v),v−i) satisfies
the conditions of Corollary 2 since, by Lemma 10 it is also true that p̂i(v) ≥ pV CG

i (v). Finally, we obtain
the third inequality by applying Lemma 8 regarding the same profile and deviation. ut

C Missing Proofs from Section 5

Proof of Theorem 4. For a profile b, let p(b) be the payment vector of the f(b)-nearest rule. Suppose for
a contradiction that (17) is not satisfied, i.e., there exists a profile b, a bidder i ∈ X∗(b), and a bid b′i > bi

for which
pi(b′i,b−i) < pi(b). (20)

Note that due to the monotonicity of X∗, it holds that X∗(b) = X∗(b′i,b−i) for b′i > bi. Since f(b)-nearest
is a Pareto-efficient payment rule, by Lemma 3, for the deviating bidder i it holds that pi(b) ≤ bi. By
combining this fact along with (20), we obtain that pi(b′i,b−i) < bi. In its turn, by Theorem 2 we have that

p(b′i,b−i) ∈ CORE(b). (21)

Equation (21) implies that the optimal solution for the profile (b′i,b−i) is actually a member of the initial core
polyhedron defined for the vector b. We distinguish that each of the following cases leads to a contradiction:
1. pi(b) = pV CG

i (b): Bidder i cannot be asked to pay a payment pi(b′i,b−i) < pV CG
i (b) as this would

violate the constraint for coalition N \ {i} in (3). This would imply that p(b′i,b−i) 6∈ CORE(b′i,b−i).
2. pi(b) > pV CG

i (b) and MREV(b′i,b−i) < MREV(b): In this case, the solution p(b′i,b−i) achieves a strictly
lower minimum revenue when compared to p(b). However, by (21), p(b′i,b−i) ∈ CORE(b), which is a
contradiction since it implies that the solution p(b) is not an MRCS solution of CORE(b).

3. pi(b) > pV CG
i (b) and MREV(b′i,b−i) = MREV(b): To analyze this case, let us first define for every vector

r, the function
D(b, r) :=

∑
j∈X∗(b)

(pj(b)− rj)2.

For a given profile b, D(b, f(b)) is the optimal value of the objective function of f(b)-nearest. We have
now the following implications:

D((b′i,b−i), f(b′i,b−i)) < D(b, f(b′i,b−i))
= D(b, f(b)) + (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b))
< D((b′i,b−i), f(b)) + (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b)) . (22)

The first inequality follows from the fact that since p(b′i,b−i) is the unique optimal solution for CORE(b′i,b−i),
and since, by Theorem 1, p(b) is also a feasible payment in CORE(b′i,b−i), the value of the objective
function D(b, f(b′i,b−i)) must be strictly larger. We apply the same argument and obtain the last in-
equality (Equation (22)) for the CORE(b) polyhedron, since by Equation (21), p(b′i,b−i) ∈ CORE(b).
By rearranging terms, Equation (22) implies

(fi(b′i)− fi(bi)) (2pi(b)− 2pi(b′i,b−i)) < 0, (23)

a contradiction, since for b′i > bi we have that fi(b′i) ≥ fi(bi) by the monotonicity of fi(·) and, by
assumption pi(b) > pi(b′i,b−i).
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ut
Detailed Derivation of Equation (23) from Equation (22)

D((b′i,b−i), f(b′i,b−i)) < D((b′i,b−i), f(b)) + (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b))⇔
((pi(b′i,b−i))− f(b′i))2 < ((pi(b′i,b−i))− f(bi))2 + (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b))⇔
((pi(b′i,b−i))− f(b′i))2 − ((pi(b′i,b−i))− f(bi))2 < (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b))⇔
(f(b′i)− f(bi))(f(b′i) + f(bi)− 2pi(b′i,b−i)) < (fi(b′i)− fi(bi)) (fi(b′i) + fi(bi)− 2pi(b))⇔
(fi(b′i)− fi(bi)) (2pi(b)− 2pi(b′i,b−i)) < 0.


